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J. Phys. A: Math. Gen. 20 (1987) 163-177. Printed in the U K  

On the time-dependent radiative transfer in photospheric 
plasmas: I. The analytical approach 
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Department of Physics, 201 North Physics Building, University of Utah, Salt Lake City, 
UT84112. USA 

Received 20 December 1985, in final form 25 April 1986 

Abstract. This paper is the first in a series investigating time-dependent radiative transfer 
processes of x rays in photospheric plasmas at non-relativistic temperatures. Two parallel 
tracks are followed and each aspect is studied with an analytical and a Monte Carlo 
method. In this first paper, an analytical random walk model, describing the diffusion of 
photons in a homogeneous spherical geometry, is presented. The starting point is a set of 
moment equations derived earlier from the relativistic Boltzmann equation. Green functions 
for every individual scattering order are derived. The total Green function is the sum over 
all scattering orders and it solves the hyperbolic diffusion equation. An important element 
of flexibility arises from the introduction of the so-called characteristic parameter ,y which 
is basically the inverse of the characteristic velocity. For high scattering orders, ,y is equal 
to d3. By adjusting ,y for the low scattering orders, agreement with numerical simulations 
is obtained. A full-scale quantitative discussion of the main results and their comparison 
with numerical simulations will be presented in the second paper of this series. 

1. Introduction 

This paper is the first of a series investigating time-dependent radiative transfer 
processes of x rays in non-degenerate ionised plasmas at non-relativistic temperatures 
kT < m,c2. In doing so we follow two parallel tracks, studying each aspect both 
analytically and with a Monte Carlo method. The content of this paper is purely 
analytical and may be of interest to both physicists and mathematicians. Addressing 
the physicists we present first a few words about the motivation for developing the 
theory presented here and to be elaborated on in subsequent papers. 

The observations in x-ray and gamma-ray astronomy during the past years have 
increasingly demonstrated the importance of time-dependent transport processes in 
astrophysical objects. Most remarkable are the so-called x-ray bursters which exhibit 
luminosity profiles varying in intensity and spectrum over time scales between minutes 
to a few thousand seconds. In the case of the so-called 1700 s event reported by Hoffman 
er a1 (1978), a precursor pulse (lasting about 4 s) is neatly separated from the main 
event (lasting longer than 1000 s) by a 3 s period of silence during which no x-ray 
luminosity was detected in the 1.5-43 keV band. Precursors have also been observed 
in the luminosity profiles of other x-ray transients. Lewin er a1 (1984) and Tawara er 
a1 (1984) have suggested that precursor pulses can possibly be explained in terms of 
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rapidly expanding neutron star photospheres. The rapid expansion, caused by a burst 
reaching or exceeding the Eddington limit, is accompanied by a drop of the matter 
temperature in the plasma layers above the neutron star’s normal radius, i.e. above 
R , -  10 km. According to Lewin et a1 (1984) and Tawara et a1 (1984), all x-ray 
frequencies are shifted down to energy channels below 1.5 keV when passing through 
the cooled plasma, thus explaining the silence in the detector range. The subsequent 
slow contraction of the photosphere is then accompanied by a rising temperature and 
the emission of the main x-ray burst over an extended time period. This picture appears 
to be simple and is certainly convenient from the astronomer’s point of view. However, 
it was pointed out earlier by Schweizer (1985a) that the realisation of this picture as 
a detailed theoretical model would be enormously complicated. The main source of 
the difficulties is given by the photospheric properties of the plasma layers above R,. 
By photospheric we mean that the radiative transfer is largely dominated by scatterings, 
i.e. a photon will, on the average, undergo a random walk through the plasma and 
escape before being absorbed. This still allows for significant thermal contact between 
matter and radiation such as Comptonisation combined with weak emission and 
absorption. The order of magnitude considerations in Schweizer (1985a) suggest, 
however, that this would be insufficient to establish local thermal equilibrium between 
matter and radiation in most parts of the plasma shell above R,. In addition one is 
faced with photon mean free paths comparable to the size of the overall geometry. 
Since such situations preclude the applicability of standard techniques for moving 
atmospheres the investigation of new methods is required. 

In this paper we develop and present an analytical theory describing the random 
walk of photons in a homogeneous spherical geometry with radius R. The sources 
can be situated in the centre of the sphere (point sources) or on a shell with radius 
ro 9 R. General spherical sources are obtained from linear superpositions of shell-like 
sources. The case of semi-infinite geometry is included in the limit of R approaching 
infinity, where we put ro = R - ro with ro denoting the optical depth of the source below 
the boundary. 

The diffusion profiles are given for each individual scattering order, i.e. we treat 
the total luminosity profile as the sum of the N-times scattered photons. Thermal 
couplings between photons and electrons are not yet discussed in this paper. But let 
us point out here that Comptonisation can easily be included by adding up the 
individual specific intensities produced by each scattering order. For a given scattering 
order the specific intensity is determined by the number of scatterings, the electron 
temperature and the spectrum of the source. This will allow for the modelling of the 
spectral evolution of a burst. 

The starting point in our approach is a set of hyperbolic diffusion equations derived 
earlier from the relativistic transfer equation. The theory elaborated here is an extended 
and improved version of a random walk model presented in an earlier paper (Schweizer 
1984a, paper I). The scatterings between photons and electrons are treated as elastic 
and coherent, i.e. we allow for Thomson scattering only. Furthermore, our random 
walk model idealises the collisions as isotropic. A comparison with results from 
numerical simulations shows that this idealisation is justified. The content of this paper 
is technical. In an attempt to keep the size of this paper reasonable, we decided to 
postpone a full-scale quantitative discussion of the main results and the comparison 
with the Monte Carlo simulations to the next paper of this series; see Schultz and 
Schweizer (1987). The applicability of the formalism developed here and the agreement 
with Monte Carlo is, however, briefly discussed at the end of this paper. 
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This paper is organised as follows. The basic concepts are developed in § 2 for 
the simple case of an infinite medium. Section 2 is easy to read and it is possible to 
skip from here to § 5 where the main results are summarised for the case of finite 
spherical geometries. Sections 3 and 4 are technical and some lengthy intermediate 
calculations have been omitted. In § 3, we establish our random walk model for the 
case of a spherical geometry and show how it can be reduced to the case of a two-sided 
slab geometry in only ( 1  + 1) dimensions. In § 4, we expand the generating function, 
derived in 9 3, in an infinite series of modified Bessel functions and extract from this 
expansion explicit expressions for the individual scattering orders. In appendix 1, we 
show how our random walk model can be modified for the case of an absorptive 
medium. 

2. Diffusion in an infinite medium 

The radiative plasmas considered in this paper are characterised by low densities and 
high temperatures. The lifetime t ,  of a photon with respect to absorption is typically 
large in this case; see for instance the numbers in table 2 in Schweizer (1984b). It is 
therefore conceivable that for a given geometry the average travel time of a photon 
through the plasma may turn out to be shorter than t , ,  thus defining a radiative transfer 
process dominated essentially by elastic collisions, i.e. Compton scattering. The main 
focus of this paper is on the random walk aspect. The thermal couplings between 
photons and electrons are ignored at this stage. Thermal couplings and spectral 
evolutions of diffusion profiles will be discussed in the third paper of this series; see, 
however, appendix 1. 

Starting from the relativistic Boltzmann equation, one can derive a hierarchy of 
frequency integrated moment equations for the photon number density N, the photon 
3-current J, and all the higher order moments; see Schweizer (1985b). The first two 
of these equations may be considered as hyperbolic diffusion equations and are, for 
the case of a non-absorptive plasma cloud moving slowly in a flat spacetime, given by 

a N / a t + V  a J = S  (1) 

K J +  ( a / a t ) J + i V N  = 0.  (2) 
The term S( t ,  x) in (1) stands for a photon source inside the cloud and K ~ =  near is 
the Thomson opacity ( n e  denoting the electron number density and uT the Thomson 
cross section). Let us further assume that ne is constant everywhere and make the 
identifications t 3 t * KT and x = x * K ~ .  The general case with variable ne will be 
investigated in one of the subsequent papers. Differentiating (1) and (2) with respect 
to t and x, one can easily separate the variables N and J. This yields the following 
second-order differential equation for N: 

a a2 a 
a t  a t 2  a t  

2 N  =- N +- N -:AN = s+-s. (3) 

The solution of (3) is, modulo homogeneous solutions, given by 

N = G * S  (4) 
where 

G = (1 +a,)G 
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and 

exp( -iot)  exp( -ip - x)  

fp2 - 2 - iw 
( 5 )  

The * symbol stands for a spacetime convolution integral. Expression ( 5 )  is a funda- 
mental solution of 2 and it is unique as a tempered distribution with support on the 
half-space t 2 0. 

Equation (3), known as the so-called 'telegraphy equation', is a wave equation and 
diffusion equation in one. The characteristic velocity is given by uc = 1/43. This value 
is reasonable for the description of isotropically distributed photon momenta and it 
can be explained as follows. The local photon velocity is equal to unity. Since there 
are no privileged spatial directions the root mean square of the velocity in a given 
direction is equal to 1/43. This argument breaks down if it comes to the description 
of photons having suffered few collisions with electrons. For unscattered photons the 
characteristic velocity is equal to unity. We introduce, for this reason, an extra element 
of flexibility and replace uf = f in (3) by x-', where the so-called characteristicparamerer 
x is allowed to take values between unity and 43. It is shown later in this section how 
one has to deal with x in a concrete situation. 

It is our aim to write the Green functions as the sum of all scattering orders as 
follows: 

where WN = (1 + a , )  W N ,  and P N - I  W N  * S or f " - I  = WN * S describe the temporal 
profiles of the ( N  - 1)-times scattered photons reaching the spacetime volume element 
at ( r ,  x)  after being released from the source S. The constituents WN are unique if we 
interpret them as the N-fold convolution products 

N factors 

of a random distribution Wl  describing single and collision-free displacements. The 
Fourier transform of (7)  is given by 

d t  d3x exp(iwt) exp(ip. X )  WN = m N  = R,". (8) 

The sum over N leads to a geometric series, the result of which must be equal to 
( 1  - i w )  times the denominator in the integral ( 5 )  with x-' in place of 4, i.e. 

I I  
1 -iw m 

N = l  I -  @ l - x - 2 p 2 - w 2 - i w *  

Solving this equation for W, yields 

1 - iw  
x- 'p2+ ( 1  -iw)' 

w1 = 

(9) 

or 
.,* 
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where r =  1x1; see also paper I in this context. Expressions for WN and WN can now 
be given as Fourier representations or explicitly in integrated form as 

x2 (t /2) - I  
W N (  t,  r ;  x) = - e-’ a ( t - X r )  4 v r  (N- l ) !  

2 2 ( v - 3 ) / 2  (+) e ( t - x r )  +- e C  ” - 3  [ ( (~-1) /2)!]’  ( N - v ) !  
(9Nx3 -, N = ~ ( ~ - ~ ) E v ( v - ~ )  t N - ”  

aT 

where 

1 for n =0,2 ,4 ,6 , .  . . 
{zero for all other cases. 

EV(n) = 

Expression (12) is included as a special case in the main results derived below; see 
(50) for the case of R approaching infinity. 

Starting from the Fourier representations, it is easy to see that the following 
normalisation conditions hold: 

The measures WN dt  d3x are, on the other hand, not positive. Furthermore, we want 
to point out here that the positivity may also be violated for the measures WN dt  d3x 
once boundary terms are added to the expression (12). In spite of this we proceed as 
if these highly singular functions are nice probability measures, being at the same time 
careful with the interpretation of the results. Whenever we encounter profiles pN or 
PN taking negative values for certain times t, we interpret this as ‘no signal’ and put 
FN or PN equal to zero. It is plausible that the singular character and non-positivity 
of these measures disperses for smooth sources. Pathologies are most likely to become 
apparent when the wN and WN are convoluted with singular point-like sources of the 
form 

(13) 

We shall nevertheless include sources of this type in our analysis. A comparison with 
results from numerical simulations suggests, however, that the temporal diffusion 
profiles P N (  t, r ;  x N )  provide better descriptions than the pM The characteristic para- 
meters x N  have to be suitably chosen for every individual scattering order. A good 
choiceis~o=1,~l=1.05,~~=1.1,~3=1.15,~4=1.2,~5=1.3,~,=1.4,~7=1.5,~s=1.6 
and x N  = d3 for N 2 9. 

S( t ,  x) = cI( t)a’(x). 

Starting from the respective Fourier representation, it is easy to see that 

t N  
d3x WN+l = - e-’ 

N! 

and 
N+1 

d3X wN+1 =- 
( N +  l)! e-‘. 

These functions describe the probabilities that a photon, released at time zero, has 
suffered N scatterings at time t and this independently of its position. Since these 
distribution functions should clearly be Poissonian as is the case for (14), we conclude 
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that from the statistical viewpoint the pN profiles are the better ones. However, better 
agreement with Monte Carlo simulations is obtained with the PN profiles, and we 
shall, for this reason, proceed with the PN. This is equivalent to deleting the S term 
in (3). This term is negligible for sources varying slowly over one time unit tT. 

The effects of absorption are so far ignored. It is, however, shown in appendix 1 
how the theory developed in this paper can be generalised for the case of absorptive 
media. 

3. Diffusion in a finite spherical geometry and the reduction to a (1 + 1)-dimensional 
problem 

In this section we consider the emission of photons from shell-like sources of the type 

S(t ,x)=6(r-ro)d( t ) .  (16) 

B R  = {X E ~ ~ 1 1 x 1  = r s R } .  

The shells with radius ro are placed inside a plasma ball 

For the sake of simplicity, we temporarily put x = 1 for all scattering orders. We shall 
restore x in § 5 below. In addition, we proceed with o ( f )  = S ( t ) ,  i.e. we establish 
functions which later have to be convoluted with general expressions for o( t ) .  

The profile for the first displacement is given by 

W ; ( t ,  r, ro) = W1 * R  s = (1 +a , )  W ,  * R  s 
6 (  t - Ix - X j )  

= (1 +a,)c  d3x‘ Ix - X’I - ro). 
4 n  BR 

The profile for the ( N  + 1)th displacement is given by 

. ra: 

= (1 + a , ) i  J d t ’  exp[-( t - t ’ ) ]  
4 T  -m 

6 (  t - t’ - Ix - x’l) 
Ix - X’I 

Kw, IX’I, ro). x d3x’ 
B R  

Note that only those photons contribute to W;+] ( t ,  r, ro) which have never moved 
beyond the boundary at r = R. In proceeding like this, W:+, can equivalently be 
interpreted as the profile created by those N-fold scattered photons which have been 
released from a shell source in an injnite medium but have never moved past the point 
r = R. 

A straightforward calculation shows that 

W;+l(t, r, ro) 

=“(‘)”+‘e-’Ja: dr ] . . .  J m  dt, J R  d r  ] . . .  J R  drN8(t- t l - l r - r , I )  
-m -m - R  - R  r 2  

x ~ ( t , - t ~ - [ r ~ - r ~ l ) . . .  6(tN-1-tN-IrN-,-rNI) 

x [ W t N  - IrN - roll - s ( t ,  - IrN + rob]. (18) 
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The profiles for point-like sources are easily obtained as follows: divide (16) by 47rri 
and take the limit as ro approaches zero. Since r i '  WE( t ,  r, ro)  converges to zero as ro 
decreases to zero, the profiles for a point source are given by 

This result can also be obtained directly by performing all convolution integrals with 
(13) in place of (16). 

Our main goal is the explicit computation of the integrals in (18). The key to the 
solution of this problem is the close connection of (18) to a tractable random walk 
process in only one time plus one space dimension. For this case let x denote the 
coordinate along the space axis. It has been demonstrated earlier in paper I that a 
distinct random distribution, describing the propagation of massless particles in an 
opaque medium in the (1 + 1)-dimensional Minkowski space, is given by 

t ,  x)  = $( t - 1x1) e-'. (20) 

Let us consider the geometry of a two-sided slab covering the interval [ - R ,  RI and 
containing a point source 

S( t ,x )=S(x-x , )6( t )  (21) 

placed at an arbitrary position xo E [ -R ,  RI. Extending all spatial convolution integrals 
over the slab only, it follows easily that the profile of the N-fold scattered photons 
arriving at x is given by 

*E+,( t, X, XO) = (t) N + l  

e-' 1 dt1 . , . dtN 1 dx, . . . 1 dXN 6( t - t l  - I X  - x1 I )  
-W -e2 - R  -R 

A comparison with (18) shows that we have the following simple relation between the 
(1 + 1)-dimensional case and the (1 + 3)-dimensional spherical case; 

W C + , ( t ,  r, ro) = (ro/r)[*RN+l(t, r, ro) - *E+,(?, r, -rO)I. (23) 

The solution of our problem reduces thus to the explicit computation of (22) which 
can be written in compact form as 

R 

+E+,( t ,  x, x,) = (:)"+I e-' 1 dx, . . . 1 dXN8(t-lX-XlI-. . . - ~ X N  -X&. (24) 
- R  - R  

It is advantageous to go to the temporal Fourier transform of (24) and proceed with 

$ E + l ( W ,  x, xo) = (3) N + l  J R  dx, .. . J R  dx, 
-R - R  

xexp[-(l-iw)lx-x,I-. . .-(1-iw)lxN--x0I]. (25) 

For parameters 0 s  E S 1, we now define a generating function 2; in terms of its Fourier 
transform as follows: 
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This implies that 
N t l  1 

$"+,(w,  x, xo) =- 

The generating function (26) is easily recognised as the Neumann series solving the 
integral equation 

R 

6 ( w , y ) = &  exp[-(l-iw)ly-x,I]+~ - R  dy , f s  exp[-(l-iw)ly-yll]6(w,y,)  (28) 

i.e. 

&, Y )  = H%, Y, xo). 
Let us define G(w, x)  = 6 ( w ,  x+xo)  and rewrite (28) as 

dx, f s  exp[-(1 -iw)lx-xll]G(w, x,). (29) I R - x o  
G(w, x ) = ~ E  exp[-(1 -iw)lxl]+ 

- R - x o  

It is straightforward to solve equation (29) with the standard techniques presented in 
the first chapter of Sobolev's (1963) book. The principal steps are as follows. First 
we split the integral in (29) into a sum ( e/2)(Z1 + Z2) = ( E / ~ ) X ,  where 

exp[-(I -io)lx-xll]G(w, xl)  dx, I' --I.--Xo 
Zl(U, x)  = 

and 

Z2( U, x)  = I x R - ' O  exp[-(1 -io)lx-x,l]G(o,x,)  dx,. 

The usual manipulations show that I; is subject to the following differential equation: 

(30) 
d2 

dx2 
- Z - a 2 C = - K &  eXp(-KlXl) 

where K = 1 - iw and a 2  K (  K - E ) .  It is easy to determine the general form of (&/2 )X 
from (30) and we substitute it into the right-hand side of (29), thus finding the following 
general expression for G :  

&K E E 
G(w, x )  = - exp(-alxl) +-A ea' + - B  e-" 

2a 2 2 

The two constants A and B are undetermined at this point. Since (29) must hold 
for arbitrary x E [ - R  - xo, R - xo], we may choose convenient values for x, e.g. x = 0, 
x = -Ro-xo, x = Ro-xo, and substitute (31) for at least two of these choices into (29). 
This provides two equations for the two unknowns A and B. It is, however, 
advantageous to work with three equations. A straightforward calculation shows that 

where 
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Finally, we want to point out that 

is a generalisation of the Green function 
equation 

solving the (1 + 1)-dimensional telegraphy 

or, more specifically, g = gf,,. Furthermore, 
conditions: 

satisfies the following boundary 

This is a direct consequence of (28) and (33). Taking the sum in (23) over all indices 
N we see that (34) together with (26) generalises to 

m 
I 

2 c W E + , ( t ,  r, rO)=(l+a,)S(r-ro)S(t) .  
N = O  

This means that 

is the Green function of the (1 + 3)-dimensional telegraphy equation for the case of a 
shell source roS  R. This concludes our conceptual discussion of the spherical (1 + 
3)-dimensional case and its reduction to a (1 + 1)-dimensional problem. 

4. The generating function as a series of modified Bessel functions 

Our next goal is the explicit calculation of the Fourier transform of (32). In their 
analysis of the one-sided slab in (1 + 1) dimensions with source at the origin, Nagel 
and MCszAros (1985) are faced with the same problem for the case of a different 
expression for i. As they point out there it is, in principle, straightforward to determine 
the poles and residues of an expression like (32). Such a procedure was also attempted 
by Minin (1971) in a similar context. Nagel and MCsziros show, however, that it is 
far more advantageous to proceed with geometric series expansions and Fourier 
transformation of each term of the series. 

It is easy to see that (32) can be expanded as follows: 

[ (1-q) / (1+q)I2" exP[-Kq(4nR+Ix-x01)] 
n = O  

(exp{-~q[2(2n - l ) R  -x-xo]} [(I  - 4 ) / ( 1 +  q)12"+' 
2q 

- - E  c 
n =O 

+ exp{ - K q [  2( 2n + 1) R + x + x0]}). (37) 
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Define 
Yl(  n) = 4nR + Ix - xoI 
Y3( n ) 2( 2n + 1 ) R  - x - XO 

Y2(n)  = 4(n + l ) R  - Ix -xoI 
Y4( n) = 2( 2n + 1) R + x + xo . 

The Fourier transformation of (37) is then given by integrals of the standard form 

It is shown in appendix 2 that 
t - V ( n )  M / 2  

J(M, y (n) )= ie ( t -  ~(n))exp[-(l-~/2)r]Z~(~(r’- Y ? ( ~ I ) ) ” ~ ) (  t +  Y , ( n )  ) 
(39) 

where 
1 M+2k M+2k 

(I) 
IM (’) = z o  k ! r( M + k + 1) 

is the modified Bessel function of the first kind of order M. For a sketchy derivation 
of (39), the reader is also referred to Nagel and MiszPros (1985). 

The generating function can now be written as 

g E  ( t ,  x, xo) = ( 1 + 8 ,  )g, ( t ,  x, xo) (41) 
where 

& 
gE(t,x,xo)=-exp[-(l  -&/2) t l  2 

W 

+ C e [ t - 4 ( n + i ) ~ + I x - x ~ 1 ]  
n = O  

- f e [ t - 2 ( 2 n + i ) ~ + x + x , l  

Xz2n+l  -{t2-[2(2n+ 1)R-x-xo]2}~’2 

n = O  

(f 
t - 2 ( 2 n + l ) R + x + x o  
t + 2( 2n + 1) R - x - XO 

- f 8[r-2(2n+1)R-x-xo] 
n -0 

1 2  - [2(2n + l )R + x + xo]2}”2 

t - 2(2n + l )R  - x - xo 
r +2(2n + l )R +x+x ,  
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The Green functions solving the telegraphy equation for the various geometries dis- 
cussed in this paper follow directly from ( 4 2 )  for E = 1 and the discussion at the end 
of the previous section. The individual scattering orders QE = ( 1  + a , )  w t  can now be 
extracted from (42 )  by systematically differentiating this expression with respect to E 

as indicated in (27) .  
For r 2 0 and ro 2 0 we define 

D”,t, r, ro) w t ( t ,  r, ro) - w t ( t ,  r, -ro). 

DE(?,  r, r o ) = A t ( t ;  r - r o ) - A ; ( t ;  r+ro)  

(43 )  

(44) 

A lengthy but straightforward calculation shows that 

where 
2 ( u - 1 ) / 2  ,(+) w - l z l )  

N E V ( v - 1 )  I N - ”  

v = l  [ ( ( u - 1 ) / 2 ) ! I 2 ( N - v ) .  
A E ( t ;  z) = (f)” e-‘ 1 

~ 2 2  t N - ”  U-I E V ( v -  n - 1) c +(;I” e-‘ - 
” - 2  ( N -  v)! n = l  [(v- n - 1 ) / 2 ] ! [ ( v + n  - 1 ) / 2 ] !  

t 2  - ( 2 n R  - I Z \ ) ~ ) ( ” - ~ - ’ ) / ~ (  t - 2nf + 1 ~ 1 ) “  6 (  t - 2 n R  + Iz() 

) 6 (  t - 2 n R  - lzl)]. 
( t 2  - ( 2 n R  + I Z ~ ) ~ ) ( ’ - ~ - ’ ) ’ ~ (  t - 2 n R  - JzI 

(45) 2 
+ 

4 

Since 

a R  a 
-A,(t; r - r o ) = - - A g ( t ;  r )  a rojo a r  

we have 

a a 
-DE(t; r, ro) = -2-A:(t; r ) .  a roio a r  

Together with (19 ) ,  ( 2 3 )  and (43 ) ,  the following compact expression for the scatter- 
ing orders of a point-like source is obtained: 

R i a  
W,( t ,  r )=- - -Ag( t ;  r ) .  

21rr a r  (47) 

This concludes the technical part of our paper and we can go ahead and restore the 
characteristic parameter ,y for general values. 

5. Summary of the main results and conclusions 

We start this section by summarising the main results for general values of x. It is 
straightforward to rederive (18) for arbitrary x and establish the following relation: 

w t + l ( t ,  r, ro; x) =x@%R++I(f, xr,  xro). 

Recalling ( 2 3 )  and (43 ) ,  we see that 

WE+l(4  r, ~ o ; x ~ = x ~ ~ 0 / ~ ~ - ~ X N R + * ~ f , X ~ , X ~ o ~  (48 )  
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where bit, = (1 +d,)D”,”,,. Expression (48) together with (44) and (45) constitute the 
explicit solution for shell sources. For a given source profile a( t ) ,  expression (48) must 
be convoluted with a(  t ) .  

The case of a semi-infinite medium is included in (48). Let T (or T ~ )  denote the 
optical depth of the observer (or source) below the boundary at R, i.e. r = R - T and 
ro = R - T ~ .  We substitute these expressions for r and ro into (48) and go to the limit 
of R approaching infinity. It follows that 

EV(v-1)  t N - ”  
W d f ,  7, 70; x) = x(9”  e-‘ c 

” = I  [ ( (v-1>/2) ! ]2(N-v)!  

In order to generalise (47) we divide the right-hand side of (48) by 4774 and go to the 
limit of ro approaching zero. This leads to the following result for point sources: 

x a  R WE( t, r ;  x)  = ---A% ( t ,  Xr).  
271r ar  

A thorough quantitative discussion of (48)-(50) and a comparison with results from 
Monte Carlo simulations for the same geometries will be presented in a separate paper 
by Schultz and Schweizer (1987). The following remarks are intended to give the 
reader a first idea about the applicability of the results derived in this paper. 

(i)  We have, so far, studied Gaussian-type sources with a ( t )  =exp(-at2). The 
parameters xo through x8 given in § 2 are reasonable for all three geometries discussed 
in this paper and they correct the timing of the low scattering orders Po through P8. 
Changing a characteristic parameter from v’3 to xj shifts not only the position of the 
maximum of e but also alters its magnitude. The profiles < ( t ;  xj) are therefore 
rescaled with appropriate multiplicative constants such that the magnitudes of the 
maxima are conserved. 

(ii) After adjusting Po through Ps in this manner good agreement with Monte Carlo 
simulations is obtained. As it turns out the analytical approach works best for the 
case of semi-infinite geometries. In this case, the agreement with numerical simulations 
extends down to small optical depths of order 0.1. In addition, the analytical method 
works also for the moderate Knudsen regime, i.e. for sources with a a 1.  

(iii) The limitations of the analytical approach are most likely to become apparent 
if the dimension of the source is less than unity or point-like as in (13). For such 
sources, the medium must be clearly optically thick and the parameter a must be 
restricted to values less than unity. For instance, if the optical depth is of order unity 
the disagreement between the two approaches is not yet dramatic but clearly visible. 

(iv) The pronounced precursors, predicted by (1) and (2) for (Y >> 1 and discussed 
in Schweizer (1985b), have disappeared in their original form. For (Y >> 1,  the numerical 
simulations produce precursors strikingly similar to the type I1 precursors in Schweizer 
(1985b). However, Monte Carlo places the precursors right at the arrival time of the 
free radiation field and not at tp  =J37tT, as predicted by (1) and (2). It was pointed 
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out above that the random walk approach in this paper does not apply to the Knudsen 
regime for point-like sources. The 'true precursors' can, for this reason, not be produced 
with our analytical method. 

In the optically thick case, the numerical simulations provide essentially the same 
results if the scatterings are assumed to be perfectly isotropic. This explains in part 
the agreement we found between the two approaches and also why the analytical 
results do not apply to the optically thin case. Optically thin geometries can be treated 
effectively by Monte Carlo methods and this limitation of the random walk approach 
is, for this reason, not disturbing. 
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Appendix 1 

Here we show how the random walk approach presented in this paper has to be 
modified for the case of an absorptive medium. The starting point is a set of generalised 
diffusion equations given by 

aNla t+V.  J = - K , N + S  (Al . l )  

d 
( K T  + K , )  J + - J + iv i~ = o 

at  
(A1.2) 

where K ,  denotes an absorption coefficient. Allowing for absorption processes such 
as (f-f) bremsstrahlung, it is straightforward to derive (Al . l )  and (A1.2) along the 
lines given in § 2 in Schweizer (1985b). Again, we introduce dimensionless times and 
lengths t = t * KT, and x = x KT, and we define dimensionless opacities 

(YE K . / K T  and 2=1+(Y. (A1.3) 
The separation of the variables N and J yields the following generalised telegraphy 
equation: 

a a2 a 
a t  a t  a t  

2 N  = (2  + a)- N + ~ ( Y N  +2 N -$AN = 2s +- s. (Al.4) 

For the case of an infinite medium, the solution of (A1.4) is, modulo homogeneous 
solutions, given by N = d * S, where now 

d=(K*+&)G 
and 

exp( - i d )  exp( -ip - x) 
ip2-uw2-iw(K*+ a)+ La ' (A1.5) 

Repeating the arguments of § 2, we find again that d = 2",, WN, where WN is an 
N-fold convolution product as in (7) but with w, = (2  +a,) W ,  and 

(A1.6) 
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Note that the normalisation of the measures W, is given by K * - N  1, where equality 
holds for the non-absorptive case, and that (14) is valid. 

Turning to the case of a finite spherical geometry we see that the only modification 
of (18) or (24) is given by replacing exp(-r) in front of the multiple integral by 
exp(-K*t). This follows from 

(<+a,)" e-"f= e-"'(a/at)"J (A1.7) 

Furthermore, one has to replace (1 - i w )  consistently by K = K* -iw. The solution of 
the integral equation remains unchanged and is given by (32) for the new definition 
of K .  The same is true for (37). The standard integrals (38) are discussed in appendix 
2. From here it is easy to see that our results generalise to the case of an absorptive 
medium if the damping factor exp( - r ) ,  multiplying every individual scattering order, 
is consistently replaced by exp( -K*t). The effects of absorption combined with multiple 
Compton scattering will be discussed in the third paper of this series. 

Appendix 2 

In this appendix, we derive (39) for the general case of an absorptive medium with 
K = K* -iw. As pointed out by Nagel and MCsziros, it is advantageous to write the 
integral (38) in the form (K*+dr).f(M, Y), where 

(A2.1) 

As w approaches fa, the function q = q ( w )  converges to unity and the integrand 
in (A2.1) can be approximated by 

For t < Y, the contour can be closed in the upper half-plane and the integral is equal 
to zero. For t > Y, the contour can be closed in the lower half-plane where we have 
the two poles i(E - 2) and 4 2 .  We deform the contour into a narrow ellipse around 
the branch cut. The parametrisation of the integration path is given by 

w ( ~ ) = - i [ K * - ~ / 2 ] - i i f ~  C O S ( A + ~ S )  (A2.2) 

where 0 < S << 1 and A E [0,27r]. It follows from this that dw = qlc dh. Furthermore, 
the total exponent appearing in the integrand of (A2.1) can conveniently be written as 

- ( K * - & ) t - & ( r 2 -  y2) l I2  COS(A +iS-iy)  

where exp( y )  = [ t + Y/ t - YI1I2. Since 

(3) = -exp[i(h +is)] (A2.3) 

(A2.4) 



Radiative transfer in photospheric plasmas: I 177 

Integrating counterclockwise from (0,O) to (27,O) to (27, iy)  to (0, iy)  and back to 
(0, 0), we see that the remaining integral in (A2.4) is the same as 

This last integral can be given explicitly in terms of modified Bessel functions (see 
9.6.19 in Abramowitz and Stegun (1970)). Altogether we have 

(A2.5) 

Notice that the only modification of (39) due to absorption appears in the time 
exponent where (1  - + E )  has been replaced by (2  - + E ) .  
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